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Abstract. This paper presents a novel formulation of the completed indirect boundary-element method to study
the shrinkage of air bubbles on a slow viscous flow in a bounded region subject to surface tension. The formulation
has application to viscous sintering, a process for manufacturing high-quality glass by means of sol-gel processing.
The theoretical background is explained in detail, including mathematical proofs of existence and uniqueness of
solutions. Numerical results are included and compared to analytical and previous numerical solutions.
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1. Introduction

Sintering is a process in which a granular compact of metals, ionic crystals or glasses con-
sisting of many particles, is heated to such a temperature that the mobility of the material
is sufficient to make contiguous particles coalesce. In the production of aerogels and glassy
materials, the material transport can be modelled as a viscous incompressible Newtonian flow,
driven solely by surface tension, and the process is known as viscous sintering.

A good theoretical understanding of the densification kinetics is needed to produce dense
and homogeneous compacts. Because of the complexity of the phenomenon, scientists study-
ing sintering have long been interested in the behaviour of simple systems which are rep-
resentative of contacting particles. More recently, numerical techniques have been devel-
oped for viscous sintering problems. The present work focusses on a new boundary-integral
formulation for the problem and its solution using the boundary-element method.

The boundary element method (BEM) was initially applied by Kuiken [1-2] and van
de Vorstet al. [3-4] to describe the sintering of simple two-dimensional and axisymmetric
systems. Kuiken [1] defined the problem in terms of the stream-function-vorticity formulation
and found the solution using a system of two coupled integral equations, for harmonic and bi-
harmonic functions. However, numerical problems occurred due to inaccuracies in computing
the derivative of the curvature, which was required in that particular formulation. Van de Vorst
et al. [3—4] defined the problem in terms of the primitive variables and found the solution
using a Lorentz’s [5] direct integral representation formulae for the Stokes flow, given by the
sum of a single- and a double-layer potentials whose densities are the surface traction and
velocity, respectively. By prescribing the surface traction, they obtained a Fredholm integral
equation of the second kind for the unknown surface velocity which is free from the problem of
computing the tangential derivative of the curvature. This formulation allowed the extension of
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Kuiken’s range of solutions. However, by directly applying Lorentz’s representation formulae
to the present second-kind boundary-value problem, an integral equation is found which is
not uniquely solvable. This requires the completion of the integral operator in order to remove
the corresponding eigenvalues through a mathematical manipulation of the integral equation
without changing the physical meaning of the solution.

In the case of a simply-connected domadry.the deformation of an arbitrarily-shaped
single viscous drop, van de Vomst al. [3] completed the operator by adding a suitable linear
combination of rigid body motions, which by definition do not alter the original boundary
conditions. For the case of a multiply-connected domeig,the sintering of a viscous drop
with internal air bubbles, besides the rigid body terms, it was necessary to add a single- and
a double-layer potential at each internal bubble to remove the eigenvalues associated with the
internal surfaces. The kernels of these layer potentials are given by the velocity and surface
traction of the flow field due to point sinks located at the interior of each bubble, coupled
with zero pressure; their densities are the same as those of Lorentz’s poteatidis,surface
traction and velocity at the bubble surfaces.

Power and Miranda [6] explained how integral equations of the second kind can be ob-
tained for general three-dimensional Stokes flows around a single particle using an in-
direct integral-equation formulation in terms of a double-layer potential. They observed that,
although the double-layer potential can only represent those flow fields corresponding to
surfaces which are force- and torque-free, the representation should be completed by adding
terms that give arbitrary total force and torque in suitable linear combinations. The extension
of Power and Miranda’s method to multiple particles in an unbounded flow was given by
Power [7] and Karrilaet al. [8], and to a particle in a bounded flow by Power and Miranda
[9] and Karrila and Kim [10]. In the latter case, the flow appears as external when looking
from the particle, but as internal when looking from the exterior contour. The second-kind
formulation for this problem is not a trivial extension, since the completeness procedure of
the deficient range of the double-layer potential requires special care due to the existence of
an exterior container. Applications to two-dimensional problems have been reported by Power
[11-13], where particular attention was paid to the Stokes’ paradox.

Karrila et al. [8] and Karrila and Kim [10] gave an elegant mathematical interpretation
of the above method, by observing its relation to Wielandt's deflation. By removing the end
points of the spectrum of the integral operator of an integral equation of the second kind,
arising from a double-layer representation without completion, they moved those eigenvalues
without affecting the rest of the eigenvalues, thus providing a bounded invertible operator and
then allowing for iterative solutions. Karrila and Kim [10] called Power and Miranda’s [6]
approach theCompleted Double-Layer Boundary-Integral-Equation Metf{G®L-BIEM),
since it involves the idea of completing the deficient range of the double-layer operator;
the CDL-BIEM technique, however, has sometimes been attributed to Karrila and Kim. It
is important to recognize here that Power and Miranda’s completed method is an extension, to
the Stokes equations, of Mikhlin’s results [14] for the exterior Dirichlet problem for Laplace’s
eqguation. More details on the completed approach can be found in the books of Kim and
Karrila [15], Pozrikidis [16] and Power and Wrobel [17].

The main objective of the present work is to propose an indirect integral-equation for-
mulation for two-dimensional viscous sintering in terms of only one surface potential. The
approach presented here is an extension of Power and Miranda’s [6] technique to the present
second-kind boundary-value problem. The potential problems with the Stokes paradox are
addressed when discussing the uniqueness of solutions. The method is constructive and re-
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quires a simpler computer implementation than previous methods, particularly in the case of
multiply-connected domains.

2. Mathematical formulation

The problem will be defined here in terms of primitive variables, similar to van der gbadt
[3—4]. Firstly, the simply-connected domain case will be considered, for which the problem is
defined by the Stokes creeping flow equations

u; 0
ps— ==L =0, (1)
xjaxj 8X,‘
Bui
=0 2
Bxi ( )

for any pointx € Q(¢). Here,Q2 is the bounded domain interior to the drop surfacassumed
to be of the Lyapunov typey is the velocity vectorp is the pressure and the dynamic
viscosity.

The interior flow field has to satisfy the following boundary condition

Ojjnj = YKn; on S(t), (3)
where
ou; ou;
= —psy (2 0 4
9ij p "+M(8xj+8x,-> ()

is the stress tensos;;n; is the surface tractiony is the surface tensiorn, is the surface
curvature, ande is the unit normal vector outward to the drop. Equation (3) represents a
balance of surface tension and fluid traction forces on the exterior boundary.

The rate of deformation is determined by the kinematic boundary conditich ahich
states that the normal component of the fluid velocity at a ppiof the drop’s surface is
equal to the normal component of the surface velocity at that point

%l’li =un; a &eS@). (5)
dr

If the quasi-static character of the motion is taken into account, the boundary-value prob-
lem (1-3) may be solved for a given drop shafie). With the computed surface velocity
u;(&,1) and a time step\r, the shape of the deformed dréjr + Ar) can be determined by
use of the kinematic condition (5). The scheme starts with a given initial drop s$tiape0);
then, at each instant in time, Equations (1-3) define a second-kind boundary-value problem
for the Stokes equations.

At each instant in time the force and torque yielded by the surface tension upon the drop
surfaceS(¢) have to be zerd,e.

/ oij(u, p)n;p!dS = / yiknoldS =0, (6)
S() NG
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whereg', [ = 1, 2, 3, are the three linearly-independent rigid body vectors, taken as:
pl=8; fori=12 and ¢(x)= (x2, —x1). (7)

Equation (6) follows from Lorentz’s reciprocal Theorem [5], given that a regular Stokes
flow field (u, p) is sought at the domain interior to the surfae), and that any rigid body
fluid motion with zero associated pressure is also a regular interior Stokes flow field with zero
stress. The solvability condition (6) can also be derived by a direct application of the Gauss
theorem to Equation (1).

Instead of using a direct BEM formulation, as in van de Vatsal. [3—4], we will seek
the solution of the present second-kind boundary-value problem in terms of a single-layer
potential alone, with unknown vector densiy[16, p. 143],

i (x) = — /S W (x, 1)@, () dS, ®)

for everyx € 2, where

. 1 1 = =y
u;’(x,y)=—m(5ij Iog(;)—i-(x ) y,)>, r=lx—yl )

72

is the two-dimensional fundamental solution of the Stokes equations, also known as the stokeslet
[18], applied at pointy and oriented in theth direction. The pressure field is given as a
distribution of the pressure corresponding to the single-layer poteingial,

ad

1 1

Applying the boundary condition (3) to the flow field described by (8) and (10), and using
the discontinuity property of the surface forces of a single-layer potential across the density-

carrying surfaceS, we obtain the following linear Fredholm integral equation of the second
kind for the unknown densityp:

Lo, (6) — /S K. 60, () dS, = yic(®)ny(&) (11)

for every¢ € S, where the kernel

(i — &)y — &)k — &)
- e E)

10r or 9 logr Eﬁa_r (cos(n(é),r))

Kji(y,§) =

mOE 3L, dne  w 0E OF;

r

is discontinuous but not singular since &), r)/r — «(§)/2 asy — £ [19, p. 299].
The adjoint to the homogeneous form of Equation (11), given by

Lo(6) — /S Kij(&. y)¢(3) dS, = 0 (12)
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has three linearly-independent eigensolutions corresponding to the rigid body motions given
by Equation (7). Therefore, the homogeneous form of Equation (11) also has three linearly-
independent eigensolution®,, | = 1, 2, 3, that are generally unknown. According to Fred-
holm’s alternative, Equation (11) has a solution if and only if the inhomogeneous term is
orthogonal to the rigid body vectorise.

/yicn,»gof ds=0, [=123
s

This will always be the case, according to the solvability condition given by Equation (6).
Nevertheless, the solution of Equation (11) is nonunique, since we can add to it any linear
combination of the eigensolutionkl,l =123

To remove the above eigenfunctions, it is necessary to add to the original Equation (11) a
term that is linearly proportional to the rigid body vectgt I = 1, 2, 3, i.e.

Lo (&) - / Kji(y. £)0,(3) S, + glE)f1 = yrEmi(€). (13)
S
It is convenient, for later use, to chooBes:

B = / d;pldS 1=1,23 (14)
S

The addition of this new term to Equation (11) does not alter the nature of the problem since
for any admissible inhomogeneous teira, when the solvability condition (6) is satisfied, the
vector g will end up being zero.

In order to prove the above statement, the new integral Equation (13) is initially multiplied
by the rigid body vectorp”, at a point on the surfac§(¢), and the resulting expression
integrated with respect #. Making use of the solvability condition (6) and Equation (12) we
obtain the result

1

E/S‘Di(é)(ﬂf(é)dss —ACI’;()’)[%GD;’()’)]dSy +/31/S¢f(§)§0f(§)d55 =0 (15)
or

8 /S (&)l (&) dS, = 0. (16)

The above linear algebraic system f&r, 85, 83 only admits the trivial solution, because
the determinant of Equation (16) has the term

/gai"gade, n,l=123
s

as element in itgth row andnth column, and is thus the Gram determinant for the vector
functionse?, ¢? and¢? with a nonvanishing value, on account of the linear independence of
ok k=1,23][19,p. 62].

Although the original integral Equation (11) and the completed Equation (13) are identical
for any admissible surface forces, the former does not have a unique solution whilst the latter
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Figure 1. Viscous region with surfacp containing air bubbles.

does. A proof is given in Appendix A, based on the fact that the homogeneous equation
corresponding to (13) only admits a trivial solution.

2.1. VISCOUS DROP WITH INTERNAL BUBBLES

Consider now several compressible gas bubbles inside a viscous drop, as shown in Figure 1.
Let © be the fluid domain exterior to the bubbles and interior to the drop sustadehe fluid
region consists of a multiply-connected domain bounded externallyp land internally by
the surfaces; ... Sy. The symbolS denotes the total surfaceg. S = SoU Sy U --- Sy,.

The flow field (u, p) satisfies Equations (1) and (2) for allbelonging to$2, and the
following boundary conditions

0;j(uE), pENn;(§) = LykEni(&) — p'n;(§) forevery & € 5, 17)

withl = 0,1,2,..., M, where thet+ sign corresponds to the exterior surfaggand the —
sign to each of the internal surfac®gs S», ..., Sy;. The normal vecton is exterior to the flow
domain at the surfac8y,, but interior to$2 at the surfacesy, So, ..., Sy.
The pressurg® at the external boundary is zero, but the presgiiré = 1,2, ..., M at
the internal gas bubbles will increase as their volume decrease. In the numerical examples,
however, all bubble pressures are assumed to be zero in order that results for the present for-
mulation can be compared with analytical and numerical solutions available in the literature.
The flow field is also subject to the solvability condition

/ O','j(u, p)n,(pll dS = / O','j(u, p)n,(pll dS, | = 1, 2, 3. (18)
So(t) S(1)—So(1)

As before, if the flow field is solely represented in terms of a single-layer potential with a
density-carrying surfacé, the resulting system of linear Fredholm integral equations of the
second kind obtained by imposing the surface traction boundary conditions (17) does not have
a unique solution. This is because its corresponding homogeneous system

Loo(e) - /S Kji(y, £)° () dS, — /S K, )9 ds, =0 (19)
0 —90
for every¢ € Sy, and

—3®0(8) — ) Kji(y,§)®5(y) dS, — » Kji(y,.§)®%(y)dSy, =0 (20)



An indirect boundary-element method for slow viscous fla%d

foreveryé € S;, j =1,2,..., M, hasM + 3 linearly independent eigensolutions.
A single-layer potential with density given by any nontrivial solution of the above system
will represent three linearly independent flow field<ini.e.

u(x) =¢'(x) foreveryxeQ, 1=123
p(x)=0 (21)

according to the zero surface traction conditions in (19) and (20). Now, by the continuity

property of the velocity field of a single-layer potential across its density-carrying surface, and
the unigueness of solution of first-kind boundary-value problems for the Stokes equations, it
follows that such single-layer potential also represents three linearly independent flow fields
in the domair2;, j = 1, 2,..., M, interior to any of the surfaces;, given by:

ux) =9'(x) xeQ;, 1=123,
p(x) = C(constant. (22)

Taking the limit of the surface traction of the single-layer potential at any of the surfaces
S;,j=12,..., M, coming from the domai®;, and using the corresponding interior flow
field (22), we have:

Loo(e) - /S Ky, ) ds, - /S Kji(y, £)0%(y) dS, = Cni (€) (23)

J —=S;

for every¢ € §;.
Subtracting Equation (20) from (23), we observe that the system (19) and (20) possesses
the following eigensolutions at each of the internal surfaes = 1,2,..., M:

O (&) = Cn;(§) forevery & e S;. (24)

Substituting the above eigensolutions in Equation (L8),in each of the integrals with
surfaceS; for j = 1,2,..., M, and using the property that every single-layer potential with
the normal vector as a surface density yields zero velocity and traction at any point exterior to
its density-carrying surface, we see that Equation (19) reduces to the adjoint of Equation (13)
and, therefore, it possesses three linearly independent eigensolutions, which are only restricted
to the exterior surfac§.

An idea given by Power [12] for the solution of the deformation of a compressible gas
bubble in an arbitrary shear flow, in terms of a well-posed second-kind Fredholm integral
equation, will be followed here in order to remove the eigensolutions at each of the bubble
surfaces. Let the solution of the present second-kind boundary-value problem be sought in
the form of a single-layer potential over the complete surfSiqgus M source harmonic
potentials, each of them located at the interior of each of the bubbles enclosed by the viscous
drop,i.e.

o (x; — xj')

2w R2 for every x € Q (25)
7 n

M
() = — /S ul(x, )@ () dS, + 3
n=1
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with R, = |x; — x!'| andx! the coordinates of a point inside each of the bubbles. The last
M terms represent the velocity field due to the harmonic potentialRlog2r, i.e. u} =
(1/27)31og R,/ dx;.

The source strengths are chosen to be linearly dependent upon the single-layer density at
the corresponding bubble surface in the following manner:

a”:/ O;(y)ni(y)dSy, n=12....M. (26)
Sn

Since the single-layer potential is a regular solution of the Stokes equations in the entire
domain with a continuous velocity field across its density-carrying surface, it can be concluded
that the net flux due to the volume change of the bubbles is equal to the sum of the strengths
o™ of the sources.

Applying the boundary condition (17) to the flow field defined by Equation (25), using the
jump property of the stresses of the single layer, and adding to the surface traction equation at
the exterior surfacé, a term proportional to the rigid body vectaps, I = 1, 2, 3, which as
before will be proven not to alter the nature of the problem, we obtain the following system
of linear Fredholm integral equations of the second kind:

20,6)— | K;i(y,&)®;(y)dS, — K;i(y,5)®;(y)dS,
So §—So

M
+ 3 @y @S E)n ) + @lE)f = yeEni(€) for & € o, 27)

n=1

m

o) - /S Ki(y, )0, () dS, — / Ki(y, 5D, () dS,

M
+ oy @S E)n ) = —ykEmiE) for £ €5, (28)
n=1
where
— ¢ 1/6; 26 —§"HE& &1

andp has been chosen as before:
Bi =/ dpldS 1=1,23
So

The proof that the additional terms in Equation (27), proportional to the rigid body vectors,
do not alter the nature of the problem follows from the solvability condition of the present
problem,i.e. Equation (18). We may evaluate the total force and torque upon the suiface
by multiplying Equation (27) by the rigid body vectap?, at a point on the surfac&(£)
and integrating the resulting expression with respeét tdsing equation (15) and noting that
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no contribution is obtained from the potential sources since all harmonic potentials yield zero
total forces and torque at any closed surface, we obtain the following equation:

- fs RACTCL /S oF (€)¢l(&) dS; = /S ye©m @l € dSe.  (29)

The property that a double-layer potential with a rigid body vector as density yields an interior
flow field that behaves like a rigid body motiare.

| Kitr.£20! @ 5. = ol ) for every y insice S,
So

has been used in obtaining Equation (29). For the following analysis, it is important to notice

that such double-layer potential is identically equal to zero outside its density-carrying surface.
If Equation (28) is multiplied by the rigid body vectgr” at a point of the surfacs,, (¢)

and the resulting expression integrated with respegt tbhen

—/ (&) (&) dSe = —/ yi@E)n; (&)l (€)dS; foreachm =1,2,..., M, (30)
Sm

m

where

/ Kji(y.6)¢l (€)dS; =0

Sm

for everyy outsidesS,, as noticed above. Therefore, from (29), the addition of (30) fomall
surfaces, the boundary condition (17) and the solvability condition (18), it follows that

g /S o (©)¢l(E)dS; = 0.

Hence, the vectg8 has to be identically equal to zero, as in the previous section. A theoretical
proof of uniqueness of solution to the system (27-28) is given in Appendix B.

3. Numerical procedures

3.1. INDIRECT BOUNDARY-ELEMENT METHOD

The numerical procedures will be first described for the case of a simply-connected domain.
Equation (13) can be written in the following discretized form:

N
i )0, — Y o /S K;i(y, £)N(y) dS,
d=1 d

N
Tl ©) Y o /S P IN) dS, = yrEni(E). (31)
d=1 d

whereN is the number of boundary elements and the tgrhas been substituted according
to Equation (14). The termy; is the characteristic term, given by the expression

cij(€) = 38
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if the surfaceS is smooth at; otherwise;; is given by:

A 1
cij () = 2—‘”! + {3 — I}, (32)
T 2

whereg; andg, are the angles subtended between.th@xis and the tangents andr, at
point&, and Ag is the angle subtended between the tangents to two contiguous nodes [20, p.
113].1 is the identity matrix, and(g) is equal to:
Io) = Sin2p, — Sin2p;  COS2p — COS 2¢
" | cos2p —cos2g Sin2p; —sin2p, |

In this work, quadratic boundary elements are used in all simulations. Adding up those
terms in Equation (31) multiplying the same nodal vadnjp we have the coefficients:

g = — / Kji(y, ©)Ni(y) S, + ¢} () / @ (V)N (y) Sy,
Sd Sda

The above integrals are all carried out numerically by use of Gauss quadrature [21]. Equation
(31) for a collocation poing can then be expressed in the form:

P
Z Hey @y = Te (33)
x=1

with
Hey = Hey + 8y Ce,

wheres; , is the Kronecker delta is a 2x 2 matrix, eactH;, is a 2x 2 matrix obtained by
assembling the coefﬁuenté £d and each®,, is a vector with component®,, ®,; P is the
total number of boundary nodes The veclorepresents the surface tensioa,

T;(§) =y« (&)ni(§).

Equation (33) is applied at each node generating?ax22P system of equations which
can be expressed in matrix form as:

Ho =T. (34)

The above system of equations for the vector denBityas solved by Gauss elimination. The
calculated values ob are then used to find the boundary velocities from Equation (8) which
is also valid at boundary points since the single-layer potenfi@, y) is continuous across
the density-carrying surface

For multiply-connected domains, the discretized form of Equations (27) and (28) is ob-
tained following a similar procedure as for simply-connected domains. The coefficients mul-
tiplying the same nodal valu®”, are added up as follows:

hiea = _/s Kji(y, §)Ni(y) dS,
d

+Za,,<u“<5))nl<s> . Ne(y)n;(y) dS, + ¢} (§) . ¢’ (»)Ne(y) dS,
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t=0.0(0.1)10.0

Figure 2. Deformation of an ellipse into a circle due to surface tension.

in which the last term is included only whéne S,. The matrix assembly, solution of the
final system of equations, and calculation of boundary velocities are carried out as previously
described.

4, Results and discussion

A computer program was written based on the developed integral-equation formulations. The
physical parameters were made dimensionless, following Kuiken [1], by defining a character-
istic velocityu.., a characteristic pressuge and a characteristic time:
l
uC=Zv pC:Za tL‘:_Ma (35)
w l 14

wherel is a characteristic length.

The surface deformations are calculated by a simple Euler scheme in which the displace-
ment of each fluid particle is found by simply multiplying its computed velocity by the time
step. This scheme provided sufficient accuracy for all cases studied herein.

4.1. SMPLY-CONNECTED DOMAINS

A simply-connected viscous fluid region of arbitrary shape subjected to surface tension will
deform until a circular form is achieved, since the normal component of the stress tensor is
constant when the curvature is constant along the sufades the fluid is assumed to be
incompressible, the area of the region should be conserved at all times.

Kuiken [1] studied the deformation of an elliptical flow region® + 10y = 1) due
to surface tension. The steady-state circular shape was achieved at a dimensionless time of
t = 10. A similar deformation process can be seen in Figure 2, obtained from the present
formulation with 20 quadratic elements evenly distributed on the elliptical boundary, with
deformations calculated at time stepsaf = 0-1. Table 1 shows coordinates of nodal points
on the first quadrant of the ellipse at times= 0, 2,5 and 10, indicating that the generated
values forr = 10 indeed belong to a circle of radius approximately equal¥é D The table
also shows that there is no significant difference between resultsfd¥ andr = 10.

The present formulation also produced acceptable values for the area conservation. The
initial ellipse has an areaab = 0-9934 while the final circular area isr? = 0-9747, which
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Figure 3. Direction of motion for points on the surface of the ellipse.
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Figure 4. Deformation of square with rounded-off corners under action of surface tension.

is 1.88% smaller. Using the same discretization of 20 quadratic elements, but reducing the
time step size improves area conservation. Kor= 0-01, the radius of the final circular
formis 05617, its area ®912 and the error-22%; for Az = 0-001, the radius is 8622, the

area 09929 and the error-05%. Keeping the time step constant and doubling the number of
elements produced virtually no improvement in the results.

Another interesting result from Kuiken’s paper refers to the evolution of particles on the
surface of the elliptical curve with time. The node displacement of Figure 3 shows a similar
behaviour to that of Kuiken [1].

The next example was taken from Kuiken [2] and van de Vetstl. [3] and consists of a
square with rounded-off corners. The present formulation was applied to the same case and
results can be seen in Figure 4. Table 2 shows coordinates of nodal points on the first quadrant
of Figure 4 atr = 0, together with the results of van de Voettal. [3] and the completed
indirect BEM forz = 1. Very good agreement between both simulations can be observed. A
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Table 1. Nodal coordinates of points in the first quadrant of Figure 2.

t =00 t =20 t =50 t =100
Nodes  x; Vi X Vi X; Vi Xi Vi
1 1.0000 00000 05647 00000 05568 00000 05569 00000
2 09877 00495 06626 00474 05547 00486 05546 00508
3 09511 00977 06550 01016 05472 01032 05467 01061
4 08910 01436 06378 01675 05301 01705 05285 01756
5 08090 01859 05081 02397 05013 02425 04995 02464
6 07071 02236 04619 03161 04556 03202 04523 03250
7 05878 02558 03981 03896 03937 03940 03907 03969
8 04540 02818 03168 04548 03133 04605 03097 04629
9 03090 03008 02204 05057 02185 05124 02159 05134
10 01564 03123 01131 05382 01121 05457 01105 05459
11 00000 03162 00000 05493 00000 0b571 00000 06570

// AN T T
/ SN // g N
7 N ) / \
\ \\\7 /// /
\ / \
h e e AN -~ 4
t=0.0 t=0.7

t=0.0(0.1) 0.7

Figure 5. Shrinkage of a fluid disk with a circular hole centered at its origin.

constant time step oAr = 0.01, as used by van de Voret al. [3], has also been adopted
here.

4.2. MULTIPLY-CONNECTED DOMAINS

The simplest example of a multiply-connected domain is the case of a circular disc containing
a circular hole. Because of surface tension acting on the outer boundary, the total region
shrinks due to the vanishing of the hole. As the region is circular, with a circular hole centered

at its origin, the forces acting on the boundary are constant and the shrinkage will also be
constant. The deformation will cease when the hole vanishes.
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Table 2. Nodal coordinates of points in the first quadrant of Figure 4.

t =00 t=10 t=10
(van de Vorset al.[3]) (present results)
Nodes X Vi X Vi Xi Vi
1 1.00000 000000 109161 000000 109187 000000
2 1.00000 016245 108428 015260 108451 015254
3 099999 030312 106562 028334 106581 028324
4 099986 042793 103877 039705 103895 039691
5 099910 053967 100569 049609 100587 049593
6 099648 063905 096833 058120 096857 058090
7 099006 072552 092909 065244 092939 065206
8 097809 079675 089136 070909 089176 070864
9 096009 085215 085749 075269 085776 075248
10 093751 089268 082837 078582 082879 078549
11 091239 092146 080304 081192 080331 081178
12 088350 094365 077784 083573 077798 083568
13 084613 096262 074768 086174 074787 086158
14 079517 097847 070764 089259 070753 089259
15 072904 098966 065509 092771 065501 092762
16 064666 099613 058741 096553 058732 096540
17 054956 099896 050456 100271 050455 100253
18 043814 099983 040611 103649 040608 103633
19 031187 099999 029130 106442 029129 106429
20 016690 100000 015672 108419 015670 108412
21 000000 100000 000000 109191 000000 109165
1.00 r T T T T
0.90 - -
0.80 external radius
0.70 n
0.60 ~ |
é 0.50 b
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Figure 6. Shrinkage of a fluid disk with a circular hole centered at its origin: Comparison between exact and
numerical solutions for the inner and outer radii.
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Figure 7. Shrinkage of a circular hole located near the boundary of a circular fluid disk. The hole shrinks remaining
inside the disk.

For the case of a fluid region of initial radiu, containing a circular hole of initial radius
R; centered at its origin, the final radiu; of the circular fluid region after deformation is
easily found analytically. Using the same nondimensional data as in van de Vorst [22], for an
initial exterior radius ofR, = 1 and an initial interior radius ak; = 0.5, we find a final radius
R that is equal to/0-75 ~ 0-866. The numerical value found with the present simulation
wasR ; ~ 0-864, which is 02% smaller than the exact value. The time when the hole vanishes
can also be found analytically, and van de Vorst [22] has shown it toxb8-73; we obtained
exactly the same value by using the present BEM formulation with a discretization of 32
guadratic elements, 16 along each surface.

Figure 5 shows the vanishing of the circular hole inside the circular fluid disk. Using a
time step ofAr = 0.01 for the analysis, curves are plotted frora= 0 to r = 0-7 at steps of
t = 0-1. A very good agreement was achieved with the results of van de Vorst [22]. Figure
6 shows the time variation of the outer/inner radii of the fluid disk depicted in Figure 5, for
the numerical and analytical solutions. The results are practically coincident, confirming the
accuracy of the graphs in the previous figure.

Another case reported by van de Vorst [22] is that of a circular fluid disk with a circular hole
located near the disk boundary. An interesting question regarding the motion is whether the
hole would deform towards the boundary, turning the disk into a simply-connected domain.
As shown by van de Vorst [22], the circular hole shrinks, but remains in the fluid region all
the time. The results obtained with the present formulation, depicted in Figure 7, are in close
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Figure 8. Shrinkage of a fluid disk with 9 equally-sized cylindrical pores.

visual agreement with van de Vorst's results for the same nondimensional data: fluid disk
radius of 1; initial hole radius of-8 with midpoint of the hole ay = 0-45.

The deformation of a fluid cylinder with 9 cylindrical pores can be seen in Figure 8. The
calculations were carried out with the same nondimensional values used by van de Vorst [22]:
radius of the cylinder equal to3 and radius of each pore equal t@ 0The shrinkage was
calculated at time steps d&fr = 0-01 and shown at steps &t = 0-05. As can be seen in
Figure 8, the holes have almost vanished at0-3.

5. Conclusions

In this paper a new integral equation formulation has been presented, in terms of only one
surface potential, which provides unique solutions to problems involving the deformation of

a bounded region of slow viscous flow, with or without air bubbles, subject to surface tension.

The formulation has been verified by application to viscous sintering problems. Numerical

results displayed excellent agreement with previous results available in the literature.

The formulation is general and can be extended to sintering problems with fluid impurities
or solid inclusions [23]. We advocate using an indirect boundary-integral formulation since it
provides simpler and more rigorous mathematical analyses of the existence and uniqueness of
solution of the resulting Fredholm integral equations. The system of equations generated by
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indirect formulations is very stable and more amenable to fast iterative solvers using multipole
expansions, without the need of any preconditioning [24].

The formulation affords a simple computational implementation, requiring only extra reg-
ular integrations which are computed simultaneously with the standard integrations of the in-
direct boundary-element scheme. Therefore, the additional computing time for the completed
formulation is negligible.

Appendix A: Proof of uniqueness of solution for simply-connected regions

In order to show that Equation (13) possesses a unique continuous sclufiona con-
tinuous datumy«n it is sufficient, according to the Fredholm alternative, to show that its
homogeneous form

%@@%—LKMMS@%wd$+d@Wf=Q (A1)

where

10 :/(pllq);)ds,
S

admits only the trivial solution in the space of continuous functions.
Equation (Al) can be rewritten as

%ﬂ@—ﬂKm%a@@m&=—W¢@y A2)

As in the case of Equation (11), the above equation has a solution if and only if the nonhomo-
geneous termy-B°¢’, is orthogonal to the rigid body vectoiise.

f/d@#@ﬂ&=a In=123
S

Consequently, and similarly to Equation (16), it is found from the above equatioftkatO.
Therefore, Equation (A1) reduces to the homogeneous form of Equation (11), which possesses
three linearly-independent eigensolutiods,, n = 1, 2, 3. From the above analysis it follows

that

ﬂf:/(pfcbde:/wfllii"dS:O, I,n=123 (A3)
S S

As follows from the homogeneous form of Equation (11), a single-layer potential
Vx,¥"),n = 1,2, 3, coming from the domain interior t§, has to yield a zero surface
traction onS. Then, the single-layer potentid (x, ¥") represents an interior Stokes flow
moving as a rigid bodyy’, with a zero associated pressure. From the continuity property of
the velocity field of a single-layer potential across its density-carrying surface, it is concluded
that the limiting value of such single-layer potential, -agpproaches a poirét € S from
the outside ofs, is alsog’. On the other hand, from the discontinuity property of the surface
traction of a single-layer potential across its density-carrying surface and the homogeneous
form of Equation (11), it follows that the limiting value of the surface tractionSpof such
single-layer potential coming from the exterior domain, has to be equit to
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Equation (A3) states that the total force and torque exerted upon the surfagehe
exterior flow field defined by the single-layer potenfialx, ¥") have to be identically equal
to zero. But, according to Chang and Finn’s [25] interpretation of the Stokes paradox, this
is not possible since such flow field represents the fluid motion exterior to the suface
due to the motion of the surface as a rigid body, and having a logarithmic behaviour at
infinity. Therefore, such flow field always yields a nonzero total force. Hence, if Equation
(A3) is satisfied, the flow field due to the single-layer potenVidk, ®°), with ®° as any
nontrivial solution of Equation (A1), has to be the null field in the domain exterior to the
surfaceS. From the continuity property of the single-layer potential across its density-carrying
surface, it follows thaV (x, ®°) represents a null flow field in the entire space; hence, by the
discontinuity property of the surface traction of such single-layer potential, it is concluded that
®° = 0 on S. In this way, it is shown that the addition to the original integral equation of the
term proportional to the rigid body motion does not alter the nature of the original problem,
and that the deficient range of the original integral operator is thus removed.

It was, therefore, established that the nonhomogeneous integral Equation (13) has a unique
continuous solution® for any continuous datum, which satisfies the solvability condition
of the present interior second-kind boundary-value problem. It was also established that the
Stokes velocity field given by Equation (8), with this as density, together with its corre-
sponding pressure field, provides the unique solution to the problem described by Equations
(1), (2) and (3).

From the previous analysis, it follows that the addition of the te/iB° to the homo-
geneous integral equation

Loo(E) - /S K (3. 5)(y) dS, = 0 (A%

removed its eigenvalue at = 1. Equation (A4) is known to possess only two eigenvalues,
A = 1landx = —1, on the complex diskk| < 1 (see Power [7] and Pozrikidis [26]). There-
fore, the analytical solution of Equation (13) can be found in terms of a modified Neumann
series as defined by Goursat [27].

Appendix B: Proof of uniqueness of solution for multiply-connected regions

Proceeding as before, in order to guarantee that the system (27—-28) possesses a unique contin-
uous solution®, we must prove that the following system of homogeneous integral equations
admits only the trivial solution,

%cb?@)—/s K 00508, — [ K. o)®50ds,

S—So
M
£ a0, @S @) ) + ¢l ) =0 for £ € S 1
n=1
_%(D?(E) _ ) K;i(y, f;‘)(l)j’.(y) ds, — o K;i(y, $)<I>§(y) ds,
M
+3 oy S E)n;€) =0 for £ € , (B2)

n=1
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withm =1,2,..., M. Here

a” = / O Mni(y)dSy, n=212....M (B3)
Sn
and
pr — / ()¢l () dS,. (84)
So

From the previous analysis it follows that the additional term in equation (B1) has to be
equal to zeroi.e.

gl = /S ()¢l () dS, = 0. (85)

From Equations (B1) and (B2), witg° = 0, it also follows that the flow field in the
bounded domaif2, defined by a single-layer potential with density given by any nontrivial
solution of (B1) and (B2) plus the sum of the corresponding harmonic sources, has to be equal
to a rigid body motion as its velocity field and zero pressure. Therefore, the following vector
fields V! and V2 defined below are equal i@:

vie— / u] (x, y)@9(y) dSy — ¢! (x), (B6)
s
M
Vl.2 = — Z a”nuis(x). (B7)
n=1

On the other handy'! yields zero flux across any closed surface ¥ifd/ields a total flux
equal toe”" in each of the internal closed surfacgsn = 1, 2, ..., M. Therefore, according
to the identity ofV* andV?,

a” = / @7 (y)ni (y) dSy = 0. (B8)

From (B5) and (B8), it results that the system (B1-B2) reduces to the system (19-20), and
therefore it possessed + 3 linearly-independent eigensolutions. However, Mienterior
eigensolutionsd!(£) = Cn; (&) are removed by condition (B8), and Equation (19) is then
reduced to the adjoint of Equation (12) whose three eigensolutions are removed by Equation
(B5), according to Equation (A3). Therefore, the only solution of the system (B1-B2) is the
trivial solution.

Let us consider, for simplicity, the case of a single internal surface. In this case, Equations
(B1) and (B2) reduce to:

Lo (e) - fs K. 500185, - /S K. 500 as,

+a0;; W E)nj(E) + @l (E)y =0 for & € So, (B9)

a0 /S K690 05, — | xio@5mas,

So

+a’0;; (uSt(E)n () =0 for & € Sy. (B10)
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From the previous analysis, it follows that the added terms remove the eigenvglies
andi; = 1 of the following system of homogeneous equations:

$PVE) — 2o [ Kji(y, ©)@5(y) dS, —)»1/ Kji(y,§)®5(y)dS, =0 for & € So, (B11)

So S1

—Z0(E) — Ay : K;i(y, §)®%(y) dS,

—ko/ K;i(y, S)Cb‘;-(y) dSy =0 for & € S;. (B12)
So

According to the Fredholm alternative,ji and 1, are eigenvalues of the above system,
thenig anda, are eigenvalues of the adjoint system

L) — T / Ky (€. )W () dS, — T / K€ y)W0(y)dS, =0 for & € So. (BL3)
So

S1

@) -7 [ KyGowods,

N
—Xo ; Kij(&,y)¥)(y)dS, =0 for & € S;. (B14)
0
Let us now define an auxiliary double-layer potential flow field in the form:
(B15)

Ulx) = | Kii(x,y)¥;(y)dS +E Kii(x, y)¥;(y)dS
i = g ij (X, Y)EY) Uoy ™ 5 ij WX YR Y)USy.
0

This is a complex function,e. U'(x) = UY (x) + iUY (x), whose real and imaginary parts
both satisfy the Stokes equations. It has a discontinuous velocity and continuous tractions
across the surface andS;. In particular, across the surfasg we have:

"
UME) o) = 3V (€) + / Kij@,y)\lfj(y)dsy“:l ) Kij (€, y)¥;(y)dS,, (B16)
So 0 1
r
UME) @ = — 308 + f Ky ds,+ 2 [ Ky nwmds,.  (617)
So 0JS1

In the aboveUl(f;‘)(,») is the limiting value ofU*(x) when a pointx tends to a poing € Sy
coming from the domain interior &, andUl(f;‘)(e) is the limiting value at coming from the
domain exterior t&y. The above formulae allow us to transform Equation (B13) to the form

[UE) i) — UE) ()] — 2olUME) iy + UME) ] =0

for everyé € Sy, or

(1— o) U,-l(%')(i) = (1+ 2o) Uil(f)(e)- (B18)
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Multiplying the above equation by the surface tractionSatof the flow field conjugate
to Ul(x),i.e. UY(x) = UV (x) — iU¥ (x), and integrating the resulting expression over the
surfaceSy, we obtain

/ [UYo;;(UY)n; + UYoij(UY)n 1) dS
So

1+
=i x
In obtaining the above equation, use was made of the continuity property of the surface trac-

tion of the double-layer potential across its density-carrying surface and Lorentz’s reciprocal
theorem [5]

/ (U} 0;;(UY)n; + Uloij(UY)n ] dS. (B19)
So

[UYo;;(UYn; — Uloyj(U)n;1dS = 0.
So
From Green’s first formula for the Stokes equations, it follows that the first integral in
Equation (B19) is real and positive, while the second integral is real but negative. Therefore,
such a relation is only possible if the coefficigtt+ Ao)/(1 — Ao) is real and negative. This
implies that the eigenvaluk, has to be real,e. 1o = Ao, and thatig| > 1.
Similarly, if we define the auxiliary Stokes flow

o
UP(x) = | Kij(x, »)¥;(y)dS, + TO K;;(x. y)¥;(y) dS,, (B20)
S1 1JS8

we find that Equation (B14) can be written in the form
[U,-Z(%')(i) — Uiz(f)(e)] + )»_1[U,»2($)(i) + U,-Z(é;')(e)] =0

for everyz e S;. Following the same approach as before, it is found that the eigenkalue
has to be real,e.A; = A1, and thati;| > 1.

It can then be concluded that the system of Equations (B11) and (B12) has no eigenvalues
in the interior of the complex diskis.o] < 1 and |4| < 1, and that the eigenvalue & =
A1 = 1 was removed by the additional terms in Equations (B9) and (B10). As for the case of
simply-connected regions, the analytical solution of the system (27) and (28) can be given in
terms of the corresponding modified Neumann series [27].
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