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Abstract. This paper presents a novel formulation of the completed indirect boundary-element method to study
the shrinkage of air bubbles on a slow viscous flow in a bounded region subject to surface tension. The formulation
has application to viscous sintering, a process for manufacturing high-quality glass by means of sol-gel processing.
The theoretical background is explained in detail, including mathematical proofs of existence and uniqueness of
solutions. Numerical results are included and compared to analytical and previous numerical solutions.
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1. Introduction

Sintering is a process in which a granular compact of metals, ionic crystals or glasses con-
sisting of many particles, is heated to such a temperature that the mobility of the material
is sufficient to make contiguous particles coalesce. In the production of aerogels and glassy
materials, the material transport can be modelled as a viscous incompressible Newtonian flow,
driven solely by surface tension, and the process is known as viscous sintering.

A good theoretical understanding of the densification kinetics is needed to produce dense
and homogeneous compacts. Because of the complexity of the phenomenon, scientists study-
ing sintering have long been interested in the behaviour of simple systems which are rep-
resentative of contacting particles. More recently, numerical techniques have been devel-
oped for viscous sintering problems. The present work focusses on a new boundary-integral
formulation for the problem and its solution using the boundary-element method.

The boundary element method (BEM) was initially applied by Kuiken [1–2] and van
de Vorstet al. [3–4] to describe the sintering of simple two-dimensional and axisymmetric
systems. Kuiken [1] defined the problem in terms of the stream-function-vorticity formulation
and found the solution using a system of two coupled integral equations, for harmonic and bi-
harmonic functions. However, numerical problems occurred due to inaccuracies in computing
the derivative of the curvature, which was required in that particular formulation. Van de Vorst
et al. [3–4] defined the problem in terms of the primitive variables and found the solution
using a Lorentz’s [5] direct integral representation formulae for the Stokes flow, given by the
sum of a single- and a double-layer potentials whose densities are the surface traction and
velocity, respectively. By prescribing the surface traction, they obtained a Fredholm integral
equation of the second kind for the unknown surface velocity which is free from the problem of
computing the tangential derivative of the curvature. This formulation allowed the extension of
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Kuiken’s range of solutions. However, by directly applying Lorentz’s representation formulae
to the present second-kind boundary-value problem, an integral equation is found which is
not uniquely solvable. This requires the completion of the integral operator in order to remove
the corresponding eigenvalues through a mathematical manipulation of the integral equation
without changing the physical meaning of the solution.

In the case of a simply-connected domain,e.g. the deformation of an arbitrarily-shaped
single viscous drop, van de Vorstet al. [3] completed the operator by adding a suitable linear
combination of rigid body motions, which by definition do not alter the original boundary
conditions. For the case of a multiply-connected domain,e.g.the sintering of a viscous drop
with internal air bubbles, besides the rigid body terms, it was necessary to add a single- and
a double-layer potential at each internal bubble to remove the eigenvalues associated with the
internal surfaces. The kernels of these layer potentials are given by the velocity and surface
traction of the flow field due to point sinks located at the interior of each bubble, coupled
with zero pressure; their densities are the same as those of Lorentz’s potentials,i.e. the surface
traction and velocity at the bubble surfaces.

Power and Miranda [6] explained how integral equations of the second kind can be ob-
tained for general three-dimensional Stokes flows around a single particle using an in-
direct integral-equation formulation in terms of a double-layer potential. They observed that,
although the double-layer potential can only represent those flow fields corresponding to
surfaces which are force- and torque-free, the representation should be completed by adding
terms that give arbitrary total force and torque in suitable linear combinations. The extension
of Power and Miranda’s method to multiple particles in an unbounded flow was given by
Power [7] and Karrilaet al. [8], and to a particle in a bounded flow by Power and Miranda
[9] and Karrila and Kim [10]. In the latter case, the flow appears as external when looking
from the particle, but as internal when looking from the exterior contour. The second-kind
formulation for this problem is not a trivial extension, since the completeness procedure of
the deficient range of the double-layer potential requires special care due to the existence of
an exterior container. Applications to two-dimensional problems have been reported by Power
[11–13], where particular attention was paid to the Stokes’ paradox.

Karrila et al. [8] and Karrila and Kim [10] gave an elegant mathematical interpretation
of the above method, by observing its relation to Wielandt’s deflation. By removing the end
points of the spectrum of the integral operator of an integral equation of the second kind,
arising from a double-layer representation without completion, they moved those eigenvalues
without affecting the rest of the eigenvalues, thus providing a bounded invertible operator and
then allowing for iterative solutions. Karrila and Kim [10] called Power and Miranda’s [6]
approach theCompleted Double-Layer Boundary-Integral-Equation Method(CDL-BIEM),
since it involves the idea of completing the deficient range of the double-layer operator;
the CDL-BIEM technique, however, has sometimes been attributed to Karrila and Kim. It
is important to recognize here that Power and Miranda’s completed method is an extension, to
the Stokes equations, of Mikhlin’s results [14] for the exterior Dirichlet problem for Laplace’s
equation. More details on the completed approach can be found in the books of Kim and
Karrila [15], Pozrikidis [16] and Power and Wrobel [17].

The main objective of the present work is to propose an indirect integral-equation for-
mulation for two-dimensional viscous sintering in terms of only one surface potential. The
approach presented here is an extension of Power and Miranda’s [6] technique to the present
second-kind boundary-value problem. The potential problems with the Stokes paradox are
addressed when discussing the uniqueness of solutions. The method is constructive and re-
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quires a simpler computer implementation than previous methods, particularly in the case of
multiply-connected domains.

2. Mathematical formulation

The problem will be defined here in terms of primitive variables, similar to van der Vorstet al.
[3–4]. Firstly, the simply-connected domain case will be considered, for which the problem is
defined by the Stokes creeping flow equations

µ
∂2ui

∂xj ∂xj
− ∂p

∂xi
= 0, (1)

∂ui

∂xi
= 0 (2)

for any pointx ∈ �(t). Here,� is the bounded domain interior to the drop surfaceS, assumed
to be of the Lyapunov type,u is the velocity vector,p is the pressure andµ the dynamic
viscosity.

The interior flow field has to satisfy the following boundary condition

σijnj = γ κni on S(t), (3)

where

σij = −pδij + µ
(
∂ui

∂xj
+ ∂uj
∂xi

)
(4)

is the stress tensor,σijnj is the surface traction,γ is the surface tension,κ is the surface
curvature, andn is the unit normal vector outward to the drop. Equation (3) represents a
balance of surface tension and fluid traction forces on the exterior boundary.

The rate of deformation is determined by the kinematic boundary condition atS, which
states that the normal component of the fluid velocity at a pointξ of the drop’s surface is
equal to the normal component of the surface velocity at that point

dxi
dt
ni = uini at ξ ∈ S(t). (5)

If the quasi-static character of the motion is taken into account, the boundary-value prob-
lem (1–3) may be solved for a given drop shapeS(t). With the computed surface velocity
ui(ξ, t) and a time step1t , the shape of the deformed dropS(t + 1t) can be determined by
use of the kinematic condition (5). The scheme starts with a given initial drop shapeS(t = 0);
then, at each instant in time, Equations (1–3) define a second-kind boundary-value problem
for the Stokes equations.

At each instant in time the force and torque yielded by the surface tension upon the drop
surfaceS(t) have to be zero,i.e.∫

S(t)

σij (u, p)njϕ
l
i dS =

∫
S(t)

γ κniϕ
l
i dS = 0, (6)
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whereϕl, l = 1,2,3, are the three linearly-independent rigid body vectors, taken as:

ϕli = δil for l = 1,2 and ϕ3(x) = (x2,−x1). (7)

Equation (6) follows from Lorentz’s reciprocal Theorem [5], given that a regular Stokes
flow field (u, p) is sought at the domain interior to the surfaceS(t), and that any rigid body
fluid motion with zero associated pressure is also a regular interior Stokes flow field with zero
stress. The solvability condition (6) can also be derived by a direct application of the Gauss
theorem to Equation (1).

Instead of using a direct BEM formulation, as in van de Vorstet al. [3–4], we will seek
the solution of the present second-kind boundary-value problem in terms of a single-layer
potential alone, with unknown vector density8 [16, p. 143],

ui(x) = −
∫
S

u
j

i (x, y)8j (y)dSy (8)

for everyx ∈ �, where

u
j

i (x, y) = −
1

4πµ

(
δij log

(
1

r

)
+ (xi − yi)(xj − yj )

r2

)
, r = |x − y| (9)

is the two-dimensional fundamental solution of the Stokes equations, also known as the stokeslet
[18], applied at pointy and oriented in thej th direction. The pressure field is given as a
distribution of the pressure corresponding to the single-layer potential,i.e.

p(x) = − 1

2π

∫
S

∂

∂xj

(
log

1

r

)
8j(y)dSy. (10)

Applying the boundary condition (3) to the flow field described by (8) and (10), and using
the discontinuity property of the surface forces of a single-layer potential across the density-
carrying surfaceS, we obtain the following linear Fredholm integral equation of the second
kind for the unknown density8:

1
28i(ξ)−

∫
S

Kji(y, ξ)8j (y)dSy = γ κ(ξ)ni(ξ) (11)

for everyξ ∈ S, where the kernel

Kji(y, ξ) = − 1

π

(yi − ξi)(yj − ξj )(yk − ξk)
r4

nk(ξ)

= 1

π

∂r

∂ξi

∂r

∂ξj

∂ log r

∂nξ
= 1

π

∂r

∂ξi

∂r

∂ξj

(
cos(n(ξ), r)

r

)
is discontinuous but not singular since cos(n(ξ), r)/r → κ(ξ)/2 asy → ξ [19, p. 299].

The adjoint to the homogeneous form of Equation (11), given by

1
2ϕ

l
i (ξ )−

∫
S

Kij (ξ, y)ϕ
l
j (y)dSy = 0 (12)
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has three linearly-independent eigensolutions corresponding to the rigid body motions given
by Equation (7). Therefore, the homogeneous form of Equation (11) also has three linearly-
independent eigensolutions,9 l , l = 1,2,3, that are generally unknown. According to Fred-
holm’s alternative, Equation (11) has a solution if and only if the inhomogeneous term is
orthogonal to the rigid body vectors,i.e.∫

S

γ κniϕ
l
i dS = 0, l = 1,2,3.

This will always be the case, according to the solvability condition given by Equation (6).
Nevertheless, the solution of Equation (11) is nonunique, since we can add to it any linear
combination of the eigensolutions9 l , l = 1,2,3.

To remove the above eigenfunctions, it is necessary to add to the original Equation (11) a
term that is linearly proportional to the rigid body vectorϕl , l = 1,2,3, i.e.

1
28i(ξ)−

∫
S

Kji(y, ξ)8j (y)dSy + ϕli (ξ )βl = γ κ(ξ)ni(ξ). (13)

It is convenient, for later use, to chooseβ as:

βl =
∫
S

8iϕ
l
i dS l = 1,2,3. (14)

The addition of this new term to Equation (11) does not alter the nature of the problem since
for any admissible inhomogeneous term,i.e.when the solvability condition (6) is satisfied, the
vectorβ will end up being zero.

In order to prove the above statement, the new integral Equation (13) is initially multiplied
by the rigid body vector,ϕn, at a point on the surfaceS(ξ), and the resulting expression
integrated with respect toξ . Making use of the solvability condition (6) and Equation (12) we
obtain the result

1

2

∫
S

8i(ξ)ϕ
n
i (ξ)dSξ −

∫
S

8j(y)[12ϕnj (y)]dSy + βl
∫
S

ϕni (ξ)ϕ
l
i (ξ )dSξ = 0 (15)

or

βl

∫
S

ϕni (ξ)ϕ
l
i (ξ )dSξ = 0. (16)

The above linear algebraic system forβ1, β2, β3 only admits the trivial solution, because
the determinant of Equation (16) has the term∫

S

ϕni ϕ
l
i dS, n, l = 1,2,3

as element in itslth row andnth column, and is thus the Gram determinant for the vector
functionsϕ1,ϕ2 andϕ3 with a nonvanishing value, on account of the linear independence of
ϕk, k = 1,2,3 [19, p. 62].

Although the original integral Equation (11) and the completed Equation (13) are identical
for any admissible surface forces, the former does not have a unique solution whilst the latter
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Figure 1. Viscous region with surfaceS0 containing air bubbles.

does. A proof is given in Appendix A, based on the fact that the homogeneous equation
corresponding to (13) only admits a trivial solution.

2.1. VISCOUS DROP WITH INTERNAL BUBBLES

Consider now several compressible gas bubbles inside a viscous drop, as shown in Figure 1.
Let� be the fluid domain exterior to the bubbles and interior to the drop surfaceS0. The fluid
region consists of a multiply-connected domain bounded externally byS0 and internally by
the surfacesS1 . . . SM . The symbolS denotes the total surface,i.e.S = S0 ∪ S1 ∪ · · · SM .

The flow field (u, p) satisfies Equations (1) and (2) for allx belonging to�, and the
following boundary conditions

σij (u(ξ), p(ξ))nj(ξ) = ±γ κ(ξ)ni(ξ)− plni(ξ) for every ξ ∈ Sl (17)

with l = 0,1,2, . . . ,M, where the+ sign corresponds to the exterior surfaceS0 and the –
sign to each of the internal surfacesS1, S2, . . . , SM . The normal vectorn is exterior to the flow
domain at the surfaceS0, but interior to� at the surfacesS1, S2, . . . , SM .

The pressurep0 at the external boundary is zero, but the pressurepl, l = 1,2, . . . ,M at
the internal gas bubbles will increase as their volume decrease. In the numerical examples,
however, all bubble pressures are assumed to be zero in order that results for the present for-
mulation can be compared with analytical and numerical solutions available in the literature.

The flow field is also subject to the solvability condition∫
S0(t)

σij (u, p)njϕ
l
i dS =

∫
S(t)−S0(t)

σij (u, p)njϕ
l
i dS, l = 1,2,3. (18)

As before, if the flow field is solely represented in terms of a single-layer potential with a
density-carrying surfaceS, the resulting system of linear Fredholm integral equations of the
second kind obtained by imposing the surface traction boundary conditions (17) does not have
a unique solution. This is because its corresponding homogeneous system

1
28

o
i (ξ)−

∫
S0

Kji(y, ξ)8
o
j (y)dSy −

∫
S−S0

Kji(y, ξ)8
o
j (y)dSy = 0 (19)

for everyξ ∈ S0, and

−1
28

o
i (ξ)−

∫
Sj

Kji(y, ξ)8
o
j (y)dSy −

∫
S−Sj

Kji(y, ξ)8
o
j (y)dSy = 0 (20)
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for everyξ ∈ Sj , j = 1,2, . . . ,M, hasM + 3 linearly independent eigensolutions.
A single-layer potential with density given by any nontrivial solution of the above system

will represent three linearly independent flow fields in�, i.e.

u(x) = ϕl(x) for every x ∈ �, l = 1,2,3

p(x) = 0 (21)

according to the zero surface traction conditions in (19) and (20). Now, by the continuity
property of the velocity field of a single-layer potential across its density-carrying surface, and
the uniqueness of solution of first-kind boundary-value problems for the Stokes equations, it
follows that such single-layer potential also represents three linearly independent flow fields
in the domain�j, j = 1,2, . . . ,M, interior to any of the surfacesSj , given by:

u(x) = ϕl(x) x ∈ �j, l = 1,2,3,

p(x) = C(constant). (22)

Taking the limit of the surface traction of the single-layer potential at any of the surfaces
Sj , j = 1,2, . . . ,M, coming from the domain�j , and using the corresponding interior flow
field (22), we have:

1
28

o
i (ξ)−

∫
Sj

Kji(y, ξ)8
o
j (y)dSy −

∫
S−Sj

Kji(y, ξ)8
o
j (y)dSy = Cni(ξ) (23)

for everyξ ∈ Sj .
Subtracting Equation (20) from (23), we observe that the system (19) and (20) possesses

the following eigensolutions at each of the internal surfacesSj , j = 1,2, . . . ,M:

8o
i (ξ) = Cni(ξ) for every ξ ∈ Sj . (24)

Substituting the above eigensolutions in Equation (19),i.e. in each of the integrals with
surfaceSj for j = 1,2, . . . ,M, and using the property that every single-layer potential with
the normal vector as a surface density yields zero velocity and traction at any point exterior to
its density-carrying surface, we see that Equation (19) reduces to the adjoint of Equation (13)
and, therefore, it possesses three linearly independent eigensolutions, which are only restricted
to the exterior surfaceS0.

An idea given by Power [12] for the solution of the deformation of a compressible gas
bubble in an arbitrary shear flow, in terms of a well-posed second-kind Fredholm integral
equation, will be followed here in order to remove the eigensolutions at each of the bubble
surfaces. Let the solution of the present second-kind boundary-value problem be sought in
the form of a single-layer potential over the complete surfaceS plusM source harmonic
potentials, each of them located at the interior of each of the bubbles enclosed by the viscous
drop, i.e.

ui(x) = −
∫
S

u
j

i (x, y)8j (y)dSy +
M∑
n=1

αn(xi − xni )
2πR2

n

for every x ∈ � (25)
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with Rn = |xi − xni | andxni the coordinates of a point inside each of the bubbles. The last
M terms represent the velocity field due to the harmonic potentials log(Rn)/2π , i.e. uSi =
(1/2π)∂ logRn/∂xi .

The source strengths are chosen to be linearly dependent upon the single-layer density at
the corresponding bubble surface in the following manner:

αn =
∫
Sn

8i(y)ni(y)dSy n = 1,2, . . . ,M. (26)

Since the single-layer potential is a regular solution of the Stokes equations in the entire
domain with a continuous velocity field across its density-carrying surface, it can be concluded
that the net flux due to the volume change of the bubbles is equal to the sum of the strengths
αn of the sources.

Applying the boundary condition (17) to the flow field defined by Equation (25), using the
jump property of the stresses of the single layer, and adding to the surface traction equation at
the exterior surfaceS0 a term proportional to the rigid body vectorsϕl , l = 1,2,3, which as
before will be proven not to alter the nature of the problem, we obtain the following system
of linear Fredholm integral equations of the second kind:

1
28i(ξ)−

∫
S0

Kji(y, ξ)8j (y)dSy −
∫
S−S0

Kji(y, ξ)8j (y)dSy

+
M∑
n=1

αnσij (u
S,n(ξ))nj(ξ)+ ϕli (ξ )βl = γ κ(ξ)ni(ξ) for ξ ∈ S0, (27)

−1
28i(ξ)−

∫
Sm

Kji(y, ξ)8j (y)dSy −
∫
S−Sm

Kji(y, ξ)8j (y)dSy

+
M∑
n=1

αnσij (u
S,n(ξ))nj(ξ) = −γ κ(ξ)ni(ξ) for ξ ∈ Sm, (28)

where

σij (u
S,n(ξ)) = σij

(
(ξ − ξn)

2πR2
n

)
= 1

π

(
δij

R2
n

− 2(ξi − ξni )(ξj − ξnj )
R4
n

)
andβ has been chosen as before:

βl =
∫
S0

8iϕ
l
i dS l = 1,2,3.

The proof that the additional terms in Equation (27), proportional to the rigid body vectors,
do not alter the nature of the problem follows from the solvability condition of the present
problem,i.e. Equation (18). We may evaluate the total force and torque upon the surfaceS0

by multiplying Equation (27) by the rigid body vector,ϕP , at a point on the surfaceS0(ξ)

and integrating the resulting expression with respect toξ . Using equation (15) and noting that
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no contribution is obtained from the potential sources since all harmonic potentials yield zero
total forces and torque at any closed surface, we obtain the following equation:

−
∫
S−S0

8j(y)ϕ
P
j (y)dSy + βl

∫
S0

ϕPi (ξ)ϕ
l
i (ξ )dSξ =

∫
S0

γ κ(ξ)ni(ξ)ϕ
P
i (ξ)dSξ . (29)

The property that a double-layer potential with a rigid body vector as density yields an interior
flow field that behaves like a rigid body motion,i.e.∫

S0

Kji(y, ξ)ϕ
P
i (ξ)dSξ = ϕPj (y) for every y inside S0

has been used in obtaining Equation (29). For the following analysis, it is important to notice
that such double-layer potential is identically equal to zero outside its density-carrying surface.

If Equation (28) is multiplied by the rigid body vectorϕP at a point of the surfaceSm(ξ)
and the resulting expression integrated with respect toξ , then

−
∫
Sm

8i(ξ)ϕ
P
i (ξ)dSξ = −

∫
Sm

γ κ(ξ)ni(ξ)ϕ
P
i (ξ)dSξ for eachm = 1,2, . . . ,M, (30)

where∫
Sm

Kji(y, ξ)ϕ
P
i (ξ)dSξ = 0

for everyy outsideSm as noticed above. Therefore, from (29), the addition of (30) for allm

surfaces, the boundary condition (17) and the solvability condition (18), it follows that

βl

∫
S0

ϕPi (ξ)ϕ
l
i (ξ )dSξ = 0.

Hence, the vectorβ has to be identically equal to zero, as in the previous section. A theoretical
proof of uniqueness of solution to the system (27–28) is given in Appendix B.

3. Numerical procedures

3.1. INDIRECT BOUNDARY-ELEMENT METHOD

The numerical procedures will be first described for the case of a simply-connected domain.
Equation (13) can be written in the following discretized form:

cij (ξ)8j(ξ)−
N∑
d=1

8k
j

∫
Sd

Kji(y, ξ)Nk(y)dSy

+ϕli (ξ )
N∑
d=1

8k
j

∫
Sd

ϕlj (y)Nk(y)dSy = γ κ(ξ)ni(ξ), (31)

whereN is the number of boundary elements and the termβl has been substituted according
to Equation (14). The termcij is the characteristic term, given by the expression

cij (ξ) = 1
2δij
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if the surfaceS is smooth atξ ; otherwise,cij is given by:

cij (ξ) = 1ϕ

2π
I + 1

2π
{J(ϕi)− J(ϕ2)}, (32)

whereϕ1 andϕ2 are the angles subtended between thex1-axis and the tangentst1 and t2 at
point ξ , and1ϕ is the angle subtended between the tangents to two contiguous nodes [20, p.
113]. I is the identity matrix, andJ(ϕ) is equal to:

J(ϕ) =
[

sin 2ϕ2− sin 2ϕ1 cos 2ϕ2 − cos 2ϕ1
cos 2ϕ2 − cos 2ϕ1 sin 2ϕ1 − sin 2ϕ2

]
.

In this work, quadratic boundary elements are used in all simulations. Adding up those
terms in Equation (31) multiplying the same nodal value8k

j , we have the coefficients:

hkij,ξd = −
∫
Sd

Kji(y, ξ)Nk(y)dSy + ϕli (ξ )
∫
Sd

ϕlj (y)Nk(y)dSy.

The above integrals are all carried out numerically by use of Gauss quadrature [21]. Equation
(31) for a collocation pointξ can then be expressed in the form:

P∑
χ=1

Hξχ8χ = Tξ (33)

with

Hξχ = Ĥξχ + δξχcξ ,

whereδξχ is the Kronecker delta,cξ is a 2× 2 matrix, eachĤξn is a 2× 2 matrix obtained by
assembling the coefficientshkij,ξd and each8n is a vector with components81,82; P is the
total number of boundary nodes. The vectorT represents the surface tension,i.e.

Ti(ξ) = γ κ(ξ)ni(ξ).
Equation (33) is applied at each node generating a 2P × 2P system of equations which

can be expressed in matrix form as:

H8 = T. (34)

The above system of equations for the vector density8 was solved by Gauss elimination. The
calculated values of8 are then used to find the boundary velocities from Equation (8) which
is also valid at boundary points since the single-layer potentialu

j

i (ξ, y) is continuous across
the density-carrying surfaceS.

For multiply-connected domains, the discretized form of Equations (27) and (28) is ob-
tained following a similar procedure as for simply-connected domains. The coefficients mul-
tiplying the same nodal value8k

J are added up as follows:

hkij,ξd = −
∫
Sd

Kji(y, ξ)Nk(y)dSy

+
M∑
n=1

σil(u
S,n(ξ))nl(ξ)

∫
(Sn)d

Nk(y)nj (y)dSy + ϕli (ξ )
∫
(S0)d

ϕlj (y)Nk(y)dSy
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Figure 2. Deformation of an ellipse into a circle due to surface tension.

in which the last term is included only whenξ ∈ S0. The matrix assembly, solution of the
final system of equations, and calculation of boundary velocities are carried out as previously
described.

4. Results and discussion

A computer program was written based on the developed integral-equation formulations. The
physical parameters were made dimensionless, following Kuiken [1], by defining a character-
istic velocityuc, a characteristic pressurepc and a characteristic timetc:

uc = γ

µ
, pc = γ

l
, tc = lµ

γ
, (35)

wherel is a characteristic length.
The surface deformations are calculated by a simple Euler scheme in which the displace-

ment of each fluid particle is found by simply multiplying its computed velocity by the time
step. This scheme provided sufficient accuracy for all cases studied herein.

4.1. SIMPLY-CONNECTED DOMAINS

A simply-connected viscous fluid region of arbitrary shape subjected to surface tension will
deform until a circular form is achieved, since the normal component of the stress tensor is
constant when the curvature is constant along the surfaceS. As the fluid is assumed to be
incompressible, the area of the region should be conserved at all times.

Kuiken [1] studied the deformation of an elliptical flow region(x2 + 10y2 = 1) due
to surface tension. The steady-state circular shape was achieved at a dimensionless time of
t = 10. A similar deformation process can be seen in Figure 2, obtained from the present
formulation with 20 quadratic elements evenly distributed on the elliptical boundary, with
deformations calculated at time steps of1t = 0·1. Table 1 shows coordinates of nodal points
on the first quadrant of the ellipse at timest = 0,2,5 and 10, indicating that the generated
values fort = 10 indeed belong to a circle of radius approximately equal to 0·557. The table
also shows that there is no significant difference between results fort = 5 andt = 10.

The present formulation also produced acceptable values for the area conservation. The
initial ellipse has an areaπab = 0·9934 while the final circular area isπr2 = 0·9747, which
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Figure 3. Direction of motion for points on the surface of the ellipse.

Figure 4. Deformation of square with rounded-off corners under action of surface tension.

is 1·88% smaller. Using the same discretization of 20 quadratic elements, but reducing the
time step size improves area conservation. For1t = 0·01, the radius of the final circular
form is 0·5617, its area 0·9912 and the error 0·22%; for1t = 0·001, the radius is 0·5622, the
area 0·9929 and the error 0·05%. Keeping the time step constant and doubling the number of
elements produced virtually no improvement in the results.

Another interesting result from Kuiken’s paper refers to the evolution of particles on the
surface of the elliptical curve with time. The node displacement of Figure 3 shows a similar
behaviour to that of Kuiken [1].

The next example was taken from Kuiken [2] and van de Vorstet al. [3] and consists of a
square with rounded-off corners. The present formulation was applied to the same case and
results can be seen in Figure 4. Table 2 shows coordinates of nodal points on the first quadrant
of Figure 4 att = 0, together with the results of van de Vorstet al. [3] and the completed
indirect BEM for t = 1. Very good agreement between both simulations can be observed. A
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Table 1. Nodal coordinates of points in the first quadrant of Figure 2.

t = 0·0 t = 2·0 t = 5·0 t = 10·0
Nodes xi yi xi yi xi yi xi yi

1 1·0000 0·0000 0·5647 0·0000 0·5568 0·0000 0·5569 0·0000

2 0·9877 0·0495 0·5626 0·0474 0·5547 0·0486 0·5546 0·0508

3 0·9511 0·0977 0·5550 0·1016 0·5472 0·1032 0·5467 0·1061

4 0·8910 0·1436 0·5378 0·1675 0·5301 0·1705 0·5285 0·1756

5 0·8090 0·1859 0·5081 0·2397 0·5013 0·2425 0·4995 0·2464

6 0·7071 0·2236 0·4619 0·3161 0·4556 0·3202 0·4523 0·3250

7 0·5878 0·2558 0·3981 0·3896 0·3937 0·3940 0·3907 0·3969

8 0·4540 0·2818 0·3168 0·4548 0·3133 0·4605 0·3097 0·4629

9 0·3090 0·3008 0·2204 0·5057 0·2185 0·5124 0·2159 0·5134

10 0·1564 0·3123 0·1131 0·5382 0·1121 0·5457 0·1105 0·5459

11 0·0000 0·3162 0·0000 0·5493 0·0000 0·5571 0·0000 0·5570

Figure 5. Shrinkage of a fluid disk with a circular hole centered at its origin.

constant time step of1t = 0·01, as used by van de Vorstet al. [3], has also been adopted
here.

4.2. MULTIPLY-CONNECTED DOMAINS

The simplest example of a multiply-connected domain is the case of a circular disc containing
a circular hole. Because of surface tension acting on the outer boundary, the total region
shrinks due to the vanishing of the hole. As the region is circular, with a circular hole centered
at its origin, the forces acting on the boundary are constant and the shrinkage will also be
constant. The deformation will cease when the hole vanishes.
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Table 2. Nodal coordinates of points in the first quadrant of Figure 4.

t = 0·0 t = 1·0 t = 1·0
(van de Vorstet al. [3]) (present results)

Nodes xi yi xi yi xi yi

1 1·00000 0·00000 1·09161 0·00000 1·09187 0·00000

2 1·00000 0·16245 1·08428 0·15260 1·08451 0·15254

3 0·99999 0·30312 1·06562 0·28334 1·06581 0·28324

4 0·99986 0·42793 1·03877 0·39705 1·03895 0·39691

5 0·99910 0·53967 1·00569 0·49609 1·00587 0·49593

6 0·99648 0·63905 0·96833 0·58120 0·96857 0·58090

7 0·99006 0·72552 0·92909 0·65244 0·92939 0·65206

8 0·97809 0·79675 0·89136 0·70909 0·89176 0·70864

9 0·96009 0·85215 0·85749 0·75269 0·85776 0·75248

10 0·93751 0·89268 0·82837 0·78582 0·82879 0·78549

11 0·91239 0·92146 0·80304 0·81192 0·80331 0·81178

12 0·88350 0·94365 0·77784 0·83573 0·77798 0·83568

13 0·84613 0·96262 0·74768 0·86174 0·74787 0·86158

14 0·79517 0·97847 0·70764 0·89259 0·70753 0·89259

15 0·72904 0·98966 0·65509 0·92771 0·65501 0·92762

16 0·64666 0·99613 0·58741 0·96553 0·58732 0·96540

17 0·54956 0·99896 0·50456 1·00271 0·50455 1·00253

18 0·43814 0·99983 0·40611 1·03649 0·40608 1·03633

19 0·31187 0·99999 0·29130 1·06442 0·29129 1·06429

20 0·16690 1·00000 0·15672 1·08419 0·15670 1·08412

21 0·00000 1·00000 0·00000 1·09191 0·00000 1·09165

Figure 6. Shrinkage of a fluid disk with a circular hole centered at its origin: Comparison between exact and
numerical solutions for the inner and outer radii.
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Figure 7. Shrinkage of a circular hole located near the boundary of a circular fluid disk. The hole shrinks remaining
inside the disk.

For the case of a fluid region of initial radiusRo containing a circular hole of initial radius
Ri centered at its origin, the final radiusRf of the circular fluid region after deformation is
easily found analytically. Using the same nondimensional data as in van de Vorst [22], for an
initial exterior radius ofRo = 1 and an initial interior radius ofRi = 0·5, we find a final radius
Rf that is equal to

√
0·75 ≈ 0·866. The numerical value found with the present simulation

wasRf ≈ 0·864, which is 0·2% smaller than the exact value. The time when the hole vanishes
can also be found analytically, and van de Vorst [22] has shown it to bet ≈ 0·73; we obtained
exactly the same value by using the present BEM formulation with a discretization of 32
quadratic elements, 16 along each surface.

Figure 5 shows the vanishing of the circular hole inside the circular fluid disk. Using a
time step of1t = 0·01 for the analysis, curves are plotted fromt = 0 to t = 0·7 at steps of
t = 0·1. A very good agreement was achieved with the results of van de Vorst [22]. Figure
6 shows the time variation of the outer/inner radii of the fluid disk depicted in Figure 5, for
the numerical and analytical solutions. The results are practically coincident, confirming the
accuracy of the graphs in the previous figure.

Another case reported by van de Vorst [22] is that of a circular fluid disk with a circular hole
located near the disk boundary. An interesting question regarding the motion is whether the
hole would deform towards the boundary, turning the disk into a simply-connected domain.
As shown by van de Vorst [22], the circular hole shrinks, but remains in the fluid region all
the time. The results obtained with the present formulation, depicted in Figure 7, are in close
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Figure 8. Shrinkage of a fluid disk with 9 equally-sized cylindrical pores.

visual agreement with van de Vorst’s results for the same nondimensional data: fluid disk
radius of 1; initial hole radius of 0·5 with midpoint of the hole aty = 0·45.

The deformation of a fluid cylinder with 9 cylindrical pores can be seen in Figure 8. The
calculations were carried out with the same nondimensional values used by van de Vorst [22]:
radius of the cylinder equal to 1·3 and radius of each pore equal to 0·2. The shrinkage was
calculated at time steps of1t = 0·01 and shown at steps of1t = 0·05. As can be seen in
Figure 8, the holes have almost vanished att = 0·3.

5. Conclusions

In this paper a new integral equation formulation has been presented, in terms of only one
surface potential, which provides unique solutions to problems involving the deformation of
a bounded region of slow viscous flow, with or without air bubbles, subject to surface tension.
The formulation has been verified by application to viscous sintering problems. Numerical
results displayed excellent agreement with previous results available in the literature.

The formulation is general and can be extended to sintering problems with fluid impurities
or solid inclusions [23]. We advocate using an indirect boundary-integral formulation since it
provides simpler and more rigorous mathematical analyses of the existence and uniqueness of
solution of the resulting Fredholm integral equations. The system of equations generated by
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indirect formulations is very stable and more amenable to fast iterative solvers using multipole
expansions, without the need of any preconditioning [24].

The formulation affords a simple computational implementation, requiring only extra reg-
ular integrations which are computed simultaneously with the standard integrations of the in-
direct boundary-element scheme. Therefore, the additional computing time for the completed
formulation is negligible.

Appendix A: Proof of uniqueness of solution for simply-connected regions

In order to show that Equation (13) possesses a unique continuous solution8 for a con-
tinuous datumγ κn it is sufficient, according to the Fredholm alternative, to show that its
homogeneous form

1
28

o
i (ξ)−

∫
S

Kji(y, ξ)8
o
j (y)dSy + ϕli (ξ )βol = 0, (A1)

where

βol =
∫
S

ϕli8
o
i dS,

admits only the trivial solution in the space of continuous functions.
Equation (A1) can be rewritten as

1
28

o
i (ξ)−

∫
S

Kji(y, ξ)8
o
j (y)dSy = −βol ϕli (ξ ). (A2)

As in the case of Equation (11), the above equation has a solution if and only if the nonhomo-
geneous term,−βoϕl, is orthogonal to the rigid body vectors,i.e.

βol

∫
S

ϕli (ξ )ϕ
n
i (ξ)dSξ = 0, l, n = 1,2,3.

Consequently, and similarly to Equation (16), it is found from the above equation thatβo ≡ 0.
Therefore, Equation (A1) reduces to the homogeneous form of Equation (11), which possesses
three linearly-independent eigensolutions,9n, n = 1,2,3. From the above analysis it follows
that

βol =
∫
S

ϕli8
o
i dS =

∫
S

ϕli9
n
i dS = 0, l, n = 1,2,3. (A3)

As follows from the homogeneous form of Equation (11), a single-layer potential
V (x,9n), n = 1,2,3, coming from the domain interior toS, has to yield a zero surface
traction onS. Then, the single-layer potentialV (x,9n) represents an interior Stokes flow
moving as a rigid body,ϕ l, with a zero associated pressure. From the continuity property of
the velocity field of a single-layer potential across its density-carrying surface, it is concluded
that the limiting value of such single-layer potential, asx approaches a pointξ ∈ S from
the outside ofS, is alsoϕl. On the other hand, from the discontinuity property of the surface
traction of a single-layer potential across its density-carrying surface and the homogeneous
form of Equation (11), it follows that the limiting value of the surface traction onS, of such
single-layer potential coming from the exterior domain, has to be equal to9n.
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Equation (A3) states that the total force and torque exerted upon the surfaceS by the
exterior flow field defined by the single-layer potentialV (x,9n) have to be identically equal
to zero. But, according to Chang and Finn’s [25] interpretation of the Stokes paradox, this
is not possible since such flow field represents the fluid motion exterior to the surfaceS

due to the motion of the surfaceS as a rigid body, and having a logarithmic behaviour at
infinity. Therefore, such flow field always yields a nonzero total force. Hence, if Equation
(A3) is satisfied, the flow field due to the single-layer potentialV (x,8o), with 8o as any
nontrivial solution of Equation (A1), has to be the null field in the domain exterior to the
surfaceS. From the continuity property of the single-layer potential across its density-carrying
surface, it follows thatV (x,8o) represents a null flow field in the entire space; hence, by the
discontinuity property of the surface traction of such single-layer potential, it is concluded that
8o ≡ 0 on S. In this way, it is shown that the addition to the original integral equation of the
term proportional to the rigid body motion does not alter the nature of the original problem,
and that the deficient range of the original integral operator is thus removed.

It was, therefore, established that the nonhomogeneous integral Equation (13) has a unique
continuous solution8 for any continuous datum, which satisfies the solvability condition
of the present interior second-kind boundary-value problem. It was also established that the
Stokes velocity field given by Equation (8), with this8 as density, together with its corre-
sponding pressure field, provides the unique solution to the problem described by Equations
(1), (2) and (3).

From the previous analysis, it follows that the addition of the termϕlβ0
l to the homo-

geneous integral equation

1
28

o
i (ξ)− λ

∫
S

Kji(y, ξ)8
o
j (y)dSy = 0 (A4)

removed its eigenvalue atλ = 1. Equation (A4) is known to possess only two eigenvalues,
λ = 1 andλ = −1, on the complex disk|λ| 6 1 (see Power [7] and Pozrikidis [26]). There-
fore, the analytical solution of Equation (13) can be found in terms of a modified Neumann
series as defined by Goursat [27].

Appendix B: Proof of uniqueness of solution for multiply-connected regions

Proceeding as before, in order to guarantee that the system (27–28) possesses a unique contin-
uous solution8, we must prove that the following system of homogeneous integral equations
admits only the trivial solution,

1
28

o
i (ξ)−

∫
S0

Kji(y, ξ)8
o
j (y)dSy −

∫
S−S0

Kji(y, ξ)8
o
j (y)dSy

+
M∑
n=1

αo
n

σij (u
S,n(ξ))nj(ξ)+ ϕli (ξ )βol = 0 for ξ ∈ S0, (B1)

−1
28

o
i (ξ)−

∫
Sm

Kji(y, ξ)8
o
j (y)dSy −

∫
S−Sm

Kji(y, ξ)8
o
j (y)dSy

+
M∑
n=1

αo
n

σij (u
S,n(ξ))nj(ξ) = 0 for ξ ∈ Sm (B2)
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with m = 1,2, . . . ,M. Here

αo
n =

∫
Sn

8o
i (y)ni(y)dSy, n = 1,2, . . . ,M (B3)

and

βol =
∫
S0

8o
i (y)ϕ

l
i (y)dSy. (B4)

From the previous analysis it follows that the additional term in equation (B1) has to be
equal to zero,i.e.

βol =
∫
S0

8o
i (y)ϕ

l
i (y)dSy ≡ 0. (B5)

From Equations (B1) and (B2), withβo = 0, it also follows that the flow field in the
bounded domain�, defined by a single-layer potential with density given by any nontrivial
solution of (B1) and (B2) plus the sum of the corresponding harmonic sources, has to be equal
to a rigid body motion as its velocity field and zero pressure. Therefore, the following vector
fieldsV 1 andV 2 defined below are equal in�:

V 1
i = −

∫
S

u
j

i (x, y)8
o
j (y)dSy − ϕli (x), (B6)

V 2
i = −

M∑
n=1

αo
n

uSi (x). (B7)

On the other hand,V 1 yields zero flux across any closed surface andV 2 yields a total flux
equal toαo

n

in each of the internal closed surfacesSn, n = 1,2, . . . ,M. Therefore, according
to the identity ofV 1 andV 2,

αo
n =

∫
Sn

8o
i (y)ni(y)dSy = 0. (B8)

From (B5) and (B8), it results that the system (B1–B2) reduces to the system (19–20), and
therefore it possessesM + 3 linearly-independent eigensolutions. However, theM interior
eigensolutions8o

i (ξ) = Cni(ξ) are removed by condition (B8), and Equation (19) is then
reduced to the adjoint of Equation (12) whose three eigensolutions are removed by Equation
(B5), according to Equation (A3). Therefore, the only solution of the system (B1–B2) is the
trivial solution.

Let us consider, for simplicity, the case of a single internal surface. In this case, Equations
(B1) and (B2) reduce to:

1
28

o
i (ξ)−

∫
S0

Kji(y, ξ)8
o
j (y)dSy −

∫
S1

Kji(y, ξ)8
o
j (y)dSy

+αoσij (uS1(ξ))nj(ξ)+ ϕli (ξ )βol = 0 for ξ ∈ S0, (B9)

−1
28

o
i (ξ)−

∫
S1

Kji(y, ξ)8
o
j (y)dSy −

∫
S0

Kji(y, ξ)8
o
j (y)dSy

+αoσij (uS1(ξ))nj(ξ) = 0 for ξ ∈ S1. (B10)
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From the previous analysis, it follows that the added terms remove the eigenvaluesλ0 = 1
andλ1 = 1 of the following system of homogeneous equations:

1
28

o
i (ξ)− λ0

∫
S0

Kji(y, ξ)8
o
j (y)dSy − λ1

∫
S1

Kji(y, ξ)8
o
j (y)dSy = 0 for ξ ∈ S0, (B11)

−1
28

o
i (ξ)− λ1

∫
S1

Kji(y, ξ)8
o
j (y)dSy

−λ0

∫
S0

Kji(y, ξ)8
o
j (y)dSy = 0 for ξ ∈ S1. (B12)

According to the Fredholm alternative, ifλ0 andλ1 are eigenvalues of the above system,
thenλ0 andλ1 are eigenvalues of the adjoint system

1
29

o
i (ξ)− λ0

∫
S0

Kij (ξ, y)9
o
j (y)dSy − λ1

∫
S1

Kij (ξ, y)9
o
j (y)dSy = 0 for ξ ∈ S0, (B13)

−1
29

o
i (ξ)− λ1

∫
S1

Kij (ξ, y)9
o
j (y)dSy

−λ0

∫
S0

Kij (ξ, y)9
o
j (y)dSy = 0 for ξ ∈ S1. (B14)

Let us now define an auxiliary double-layer potential flow field in the form:

U1
i (x) =

∫
S0

Kij (x, y)9j (y)dSy + λ1

λ0

∫
S1

Kij (x, y)9j (y)dSy. (B15)

This is a complex function,i.e.U1(x) = U1r(x) + iU 1i(x), whose real and imaginary parts
both satisfy the Stokes equations. It has a discontinuous velocity and continuous tractions
across the surfacesS0 andS1. In particular, across the surfaceS0 we have:

U1
i (ξ )(i) = 1

29i(ξ)+
∫
S0

Kij (ξ, y)9j(y)dSy + λ1

λ0

∫
S1

Kij (ξ, y)9j(y)dSy, (B16)

U1
i (ξ )(e) = −1

29i(ξ)+
∫
S0

Kij (ξ, y)9j(y)dSy + λ1

λ0

∫
S1

Kij (ξ, y)9j(y)dSy. (B17)

In the above,U1(ξ)(i) is the limiting value ofU1(x) when a pointx tends to a pointξ ∈ S0

coming from the domain interior toS0, andU1(ξ)(e) is the limiting value atξ coming from the
domain exterior toS0. The above formulae allow us to transform Equation (B13) to the form

[U1
i (ξ )(i) − U1

i (ξ )(e)] − λ0[U1
i (ξ )(i) + U1

i (ξ )(e)] = 0

for everyξ ∈ S0, or

(1− λ0)U
1
i (ξ )(i) = (1+ λ0)U

1
i (ξ )(e). (B18)
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Multiplying the above equation by the surface traction, atS0, of the flow field conjugate
to U1(x), i.e.U1∗(x) = U1r (x) − iU1i(x), and integrating the resulting expression over the
surfaceS0, we obtain∫

S0

[U1r
i σij (U

1r)nj + U1i
i σij (U

1i)nj ](i) dS

= 1+ λ0

1− λ0

∫
S0

[U 1r
i σij (U

1r)nj + U1i
i σij (U

1i)nj ](e) dS. (B19)

In obtaining the above equation, use was made of the continuity property of the surface trac-
tion of the double-layer potential across its density-carrying surface and Lorentz’s reciprocal
theorem [5]∫

S0

[U1r
i σij (U

1i)nj − U1i
i σij (U

1r)nj ]dS = 0.

From Green’s first formula for the Stokes equations, it follows that the first integral in
Equation (B19) is real and positive, while the second integral is real but negative. Therefore,
such a relation is only possible if the coefficient(1+ λ0)/(1− λ0) is real and negative. This
implies that the eigenvalueλ0 has to be real,i.e.λ0 = λ0, and that|λ0| > 1.

Similarly, if we define the auxiliary Stokes flow

U2
i (x) =

∫
S1

Kij (x, y)9j (y)dSy + λ0

λ1

∫
S0

Kij (x, y)9j (y)dSy, (B20)

we find that Equation (B14) can be written in the form

[U2
i (ξ )(i) − U2

i (ξ )(e)] + λ1[U2
i (ξ )(i) + U2

i (ξ )(e)] = 0

for everyξ ∈ S1. Following the same approach as before, it is found that the eigenvalueλ1

has to be real,i.e.λ1 = λ1, and that|λ1| > 1.
It can then be concluded that the system of Equations (B11) and (B12) has no eigenvalues

in the interior of the complex disks|λ0| 6 1 and |λ1| 6 1, and that the eigenvalue atλ0 =
λ1 = 1 was removed by the additional terms in Equations (B9) and (B10). As for the case of
simply-connected regions, the analytical solution of the system (27) and (28) can be given in
terms of the corresponding modified Neumann series [27].
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